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1.28 (3 H, t, J = 6.3 Hz); I R  (CHC13) 2940 s, 2450 m, 1749 s cm-'. Anal. 
Calcd for C17H24N02Br: C, 57.63; H,  6.82; N, 3.95. Found: C, 57.47; 
H, 6.74; N, 3.92. 

Liquid isomer (26b): NMR (CDC13) F 7.5 (5 H, pseudo s), 5.75-6.4 
(1 H,m),5.4-5.7 (2H,m),4.6-5.1 (3H,m),4.28(2H,q, J = 7Hz),4.0 
(4 H, pseudo s), 2.0-2.28 (4 H, m), 1.35 (3 H, t, J = 7 Hz); IR (CHC13) 
3020 s, 2397 m, 1749 w cnn-'. 
N-Benzyl-2-carboethoxyazacyclooct-4-ene (27 and 28). N- 

Benzyl-N-carboethoxymethyl-2-vinylpyrrolidinium bromide (26a, 
solid isomer; 62.3 mg, 0.1~75 mmol) was dissolved in acetonitrile (2 
mL). Solid, finely ground potassium carbonate (27.7 mg, 0.200 mmol) 
was quickly added, and the resulting heterogeneous mixture was 
stirred a t  room temperature for 3.5 h. The solvent was evaporated by 
a stream of nitrogen, and the residue was taken up in water (2 mL) 
and extracted with hexane (4 X 7 mL). The combined organic layers 
were dried over sodium sulfate, filtered, and evaporated to give a 
colorless oil (44.5 mg). Preparative layer chromatography on silica 
gel (EM Reagents, 6013-254) using a 1:l ether-hexane mixture as the 
eluent left a colorless oil (22.9 mg) at an Rf  of 0.65, which proved to 
be the cis isomer 27, yield 48%; IR (CHC13) 2942 s, 1725 s, 701 m cm-'; 
NMR (CDC13) 6 7.32 (5  H,m), 5.84 (1 H, d d d , J  = 10.5,9,8Hz), 5.69 
(1 H,  ddd, J = 9 , 8 , 8  Hz). 4.20 (2 H, q, J = 7 Hz), 3.94 (2 H, AB, J = 
14 Hz), 3.41 (1 H, dd, J = 5.6, 5 Hz), 2.0-3.3 (6 H, m), 1.2-1.7 (2 H, m), 
1.30 (3 H, t, J = 7 Hz); rn/e 273, (base 200, exact mass, 273.17271; cdcd 
for C17H23N0zr 273.17288. 

Analysis (NMR and IR) of the crude product after hexane extrac- 
tion but prior to chromatography showed the presence of the unstable 
trans isomer 28, which decomposed on silica gel. Additional absorb- 
tions in the mixture were as follows: IR (CHC13) 1732 s, 971 m cni-'; 
NMR (CDC13) 6 5.90 (1 H, m), 5.45 (1 H , d d d , J  = 15.5,11.8,3.7 IIz), 
4.22 (3 H, q),  1.33 (3 H, i ) ,  and additional unresolved signals over- 
lapping those of 27. Comparison of the peak heights of the methyl 
triplets at 6 1.33 and 1.30 i n  the NMR indicates the ratio of cis to trans 
isomers from the solid isomer 26a is approximately 3:2. 

The above procedure if; somewhat modified for rearrangement of 
the liquid isomer 26b. F'otassium tert-butoxide (30.4 mg, 0.261 mmol) 
in dry tetrahydrofuran (1 mL, distilled from sodium benzophenone) 
was added dropwise to a stirred solution of N-benzyl-N-car- 
boethoxymethyl-2-vinylpyrrolidinium bromide (liquid isomer 26b; 
87.5 mg, 0.247 mmol) in dry THF (3 mL). The resulting solution was 
stirred at room temperature for 2 h. Workup as before left a colorless 
oil (19.2 mg) after preparative layer-chromatography which proved 
to be identical with the ;product 27 obtained from the solid isomer 26a, 
28% yield. In addition, t,he crude material from the hexane extraction 
contained both 27 and 28 in a ratio varying from 45:55 to 40:60, de- 
pending on the experiment. 

An aliquot containing both the cis and trans isomers 27 and 28 was 
stirred with excess 1,8-diphenylisobenzofuran in methylene chloride 
for 3 h. Isolation of the products by preparative layer chromatography 
on silica gel (EM Reagents, 6OP-254) using a 1:l ether-hexane mixture 
as eluent gave recovered 217 ( R f  0.67) as well as a noncrystalline niix- 
ture of several diastereomers of the Diels-Alder adduct 29 ( R f  0.571, 

in which no olefinic protons were observed; NMR (CCL) 6 7.0-7.8 (19 
H, m), 3.2-4.3 (5 H, m), 2.5-3.0 (1 H, m), 1.0-2.4 (11 H, m); mle 543, 
91 (base); exact mass, 543.27619; calcd for C3~H37N03~543.27734. 
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The reaction of 1 equiv of 3,6-dihalopyridazine (1) with 2 equiv of 6-halo-3(2H)-pyridazinethione (2) in slightly 
acidic, refluxing methanol yields the double-substitution product 3,6-bis(6-halo-3-pyridazinethio)pyridazine (3). 
The mechanism of the reaction is viewed as successive nucleophilic displacements upon protonated 1 by the thione 
tautomer crf 21. 

The pyridazine ring system is highly resistant to electro- 
philic substitution, but for pyridazines substituted with ap- 
propriate leaving groups nucleophilic substi tution is a facile 
process.l The conversion of la to 2 a  is a rather typical exam- 
ple.2 

It was during the synthesis of 2a  from la, inadvertently run 
under  acidic rather than basic conditions, that we noted the 
formation of a new product (3a). T h i s  product was found to 
be the result of fur ther  reaction of la with 2a. In general, we 
have found that 3,6-dihalopyridazines (1) react in  slightly 
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C l O . C l  
N=N 

la 

2a 

acidic, refluxing methanol with 6-halo-3(2H)-pyridazine- 
thiones (2) t o  yield the  double-substitution product 3,6- 
bis(6-halo-3-pyridazinethio)pyridazine (3). 

x n - x  + :! Y + O = S  
x=x TU'-NH 

1 2 
l a ,  X = C1 
b, X = Br 

2a, Y = C1 
b,  Y = Br 
c , Y = H  

CH,OH. 65 "C 
N=N N'N N=N 

3 
3a, Z,Z' = C1 
b, Z,Z' = Br 
c ,  Z,Z' = H 
d, Z = C1; Z' = Br 

Depending upon the substitution patterns of 1 and 2, either 
3a, b, c, or d may be formed as the  major product. 

la + 2 2a - 3a 

l b  + 2 2a - 3a 

l b  + 2 2b - 3b 

la  + 2 2c - 3c 

l b  + 2 2c - 3c 

la + 2 2b - 3d 

T h e  release of halide ion as a product of the reaction was 
detected by potentiometric t i tration; yields were always 
95-100% of theoretical. 

Results and Discussion 

displacements of halide ion by the  nucleophilic sulfur of 2. 
We consider t ha t  the  mechanism involves two successive 

N=N 
4 

4 + 2 - 3  

Since the  reaction does not take  place under  basic condi- 
tions (e.g., the conditions for synthesis of 2a from la) and since 
a slightly acidic medium is required, we expect t ha t  the  nu- 
cleophilic atLack occurs upon protonated l .  However, the  re- 
action cannot be run under strongly acidic conditions because 
2 precipitates. T h e  attacking nucleophile is probably the 
thione, rather t han  the thiol, tautomer of 2, since the  parent 
compound, 3(2H)-pyrida~inethione,~ and other  derivative^^,^ 
have been shown to  exist predominantly in the thione form. 
T h e  two-step mechanism shown below is typical for acid- 
catalyzed heterocyclic nucleophilic substitution.'j 

At least two alternative mechanisms involving neutral  
substrates may be envisioned.7 One possibility is a preequi- 
librium between the  slightly acidic 2 and the  slightly basic 1, 

N-NH N-NH 
t 

1 Hf 
2 

4 L"+ 

followed by a rapid reaction of the  resulting ion pair, as has 
been observed for arylthiol reactions with chloroquinoline.s 
Alternatively, 2 may act as a bifunctional nucleophile, in- 
volving H bonding to  the  ring N of 1 t o  enhance r e a ~ t i v i t y . ~  
In the absence of any specific kinetic data ,  we cannot rule out 
these mechanistic possibilities. 

We have never been able to isolate the  expected interme- 
diate 4. Apparently, the  initial substitution greatly increases 
the reactivity toward further nucleophilic substitution. Thus,  
4 must  be much more reactive toward 2 than  1 is and goes on 
to  product 3 rapidly. Reactions run to partial completion and 
reactions with up to a tenfold excess of 1 over 2 gave only 3 and 
no evidence for 4. A possible explanation is that  the inter-  
mediate 4 is doubly protonated, which would be expected to  
enhance its reaction toward nucleophiles. In fact, the  initial 
reaction between 1 H+ and 2, followed by halide ion loss, leads 
directly to  doubly protonated 4. Still further substitutions, 
after the  second rapid substitution, are not observed, simply 
because the  product 3 precipitates from solution. If the  reac- 
tion is run in hot DMF, in which 3 is soluble, the only product 
observed is intractable polymeric material, suggesting t h a t  
further substitution apparently can occur while 3 remains in 
solution. 

The  formation of a bromochloro derivative 3d from l a  plus 
2b is taken as evidence t h a t  the reaction must  go through a 
bromochloro intermediate 4a from which Br is a better leaving 
group than  C1. T h e  nucleophile can onlv displace C1 from la, 

"=I\;' 
4a 

bu t  from 4a displacement of Br is apparently preferred over 
displacement of C1. T h e  release of 1 equiv of C1-, followed by 
1 equiv of Br-, was monitored by potentiometric t i tration. 
This  reactivity order is relatively unusual for activated aro- 
matic or heterocyclic nucleophilic substitution, where the  
normal order of halogen reactivity is F >> C1 * Br 2 I.*O In 
some cases, however, Br has been found to  be a better leaving 
group than  C1 in activated aromatic nucleophilic substi tu- 
t ionll  and  in heterocyclic nucleophilic substitution.12 T h e  
reversal of order of leaving-group activity indicates t h a t  car- 
bon-halogen bond cleavage is significant in the  rate-deter-  
mining step.1° Thus, the addition of 2 to 4 must involve a rapid 
initial at tack followed by a rate-determining loss of halide 
ion. 

Experimental Section 
3,6-Dichloropyridazine ( la)  and 3,6-dibromopyridazine ( lb)  

were prepared from maleic hydrazide and POC13 or PBrj.13 
6-Chloro-3(2H)pyridazinethione (2a) and 6-bromo-3(2H)- 

pyridazinethione (2b) were prepared from la or lb by refluxing with 
NaSH in methanoL2 

3(2H)-Pyridazinethione (2c) was prepared from 3(2H)-pyrida- 
zinone by treatment with PzSs in pyridine l4 The pyridannone was 
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prepared from la by treatment with hot 3 N NaOH,lS followed by 
hydrogenolysis.16 
3,6-Bis(6-chloro-3-pyridazinethio)pyridazine (3a) was pre- 

pared by the reaction of eit.her la or l b  with 2 equiv of 2a in refluxing 
methanol. Inclusion of t,wo drops of concentrated HCl improved the 
yields somewhat. During 3 h a t  reflux, a green solid precipitated. The 
reaction mixture was reduced to about half-volume by distillation at 
atmospheric pressure, cooled, and filtered. The solid residue was 
washed with hot methanol and recrystallized from DMF, mp 205-207 
"C. The yield of purified product was 68% from la and 75% from lb. 
The identity of the products from the two precursors was verified by 
the identity of the infrared spectra (see below) and the absence of a 
mixture melting point depression. 

The structure of 3a was deduced from the common method of 
synthesis (from la or lb); from sodium fusion tests which indicated 
N, S, and C1, but no Br; and from infrared, mass spectral, and ele- 
mental analyses: IR (KBr pellet): 3000,1650,1550,1380,1280,1210, 
1130,1030,1000,840, and 770 cm-I; mass spectrum17 parent peaks 
a t  368,370, and 372 in the expected 9:6:1 ratio; M - C1 peaks at 333 
and 335; other major fragments were at 223 and 225. Molecular weight 
was determined by the Rast method: 391 (calculated: 369). Anal.l8 
Calcd for C12H&12N&: C, 39.0; H, 1.6; N, 22.8. Found: C, 39.20; H, 
1.9; N, 22.0. 
3,6-Bis(6-bromo-3-pyridazinethio)pyridazine (3b) was pre- 

pared similarly to 3a, using 2 equiv of 2b and 1 equiv of lb. Yields of 
the green product were typically 50%, after recrystallization from 
DMF: mp 216-217 "C (dec); IR (KBr pellet) 3000, 1630,1510,1440, 
1370,1260,1120,1030,1000,840, and 710 cm-'; mass spectrum parent 
peaks at about 456,458,460 (very low intensities made accurate mass 
counting difficult; however, the expected 1:2:1 ratio was evident); M 
- Br peaks at 377 and 379; other major fragments were at 267 and 269. 
Anal.lg Calcd for C&&r:J%&: c ,  31.5; H, 1.3; N, 18.3. Found: C, 
29.7; H,  2.0; N, 17.5. 
3,6-Bis(3-pyridazinethio)pyridazine (3c) was prepared similarly, 

by the reaction of 2 equiv of 2c with 1 equiv of either la or lb. The 
dark-blue product was recrystallized from DMF, washed with acetone 
until the filtrate was clear, amd dried in vacuo. The yield was 53%: mp 
250 "C; IR (KRr pellet) 3060,1533,1400,1340,1280,1240,1110,975 
cm-'. Anal.19 Calcd for C1:!HaN&: C, 48.0; H, 2.7; N, 28.0. Found: 
C, 41.4; H, 2.6; N, 23.8. 
3-(6-Bromo-3-pyridazinethio)-6-(6'-chloro-3'-pyridazine- 

thio)pyridazine (3d) was prepared similarly to 3a or 3b using 1 equiv 
of la and 2 equiv of 2b. Recrystallization from DMF gave 41% of the 
green product: mp 194-196 "C (dec); IR (nujol mull) 1690,1560,1520, 
1300,1130,1030,840,775,765,710 cm-l; mass spectrum parent peaks 
at 412,414,416 (very weak; the expected 34:l  ratio was unconfirmed); 
peaks common to the spectrum of 3a were observed at 333 and 335 
(M - Br) and a t  223 and 225; peaks common to the spectrum of 3b 
were observed at 377 and 379 (M - C1) and a t  267 and 269. Anal.ls 
Calcd for ClzHGBrCIN&: C,34.8; H, 1.5; N, 20.3. Found: C, 38.3; H, 
2.0: N, 19.5 

Potentiometric Titrations. The release of halide ion was moni- 
tored by potentiometric titrations with standardized &NO3 solution. 
Standardizations were performed against KC1 and KBr, including 
mixtures, such that both C1- and Br- could be determined indepen- 
dently. Since the reactions were run in refluxing acidic methanol, the 
HX was trapped as a gas, entrained in a stream of nitrogen, and 
bubbled through an aqueous solution. An aliquot of this solution was 
then titrated with AgN03. Yields of halide were 2.0 equiv (f5%) based 
upon starting 1. 
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